Вычислить предел используя правило лопиталя. Как найти пределы по правилу лопиталя

Вычислить предел используя правило лопиталя. Как найти пределы по правилу лопиталя

Для решения пределов существуют различные методы решений и формулы. Но самым быстрым и легким способом, а также универсальным является метод Лопиталя. Для того, чтобы успешно пользоваться этим замечательным простым способом вычисления пределов достаточно хорошо уметь находить производные различных функций. Начнём с теории.

Сформулируем правило Лопиталя. Если:

  • $ \lim \limits_{x \to a} f(x) = \lim \limits_{x \to a} g(x) = 0 \text{ или } \infty $
  • Существуют $ f"(a) \text{ и } g"(a) $
  • $ g"(x)\neq0 $
  • Существует $ \lim \limits_{x \to a} \frac{f(x)}{g(x)} $

тогда существует $ \lim \limits_{x \to a} \frac{f(x)}{g(x)} = \lim \limits_{x \to a} \frac{f"(x)}{g"(x)} $

  1. Подставляем точку $ x $ в предел
  2. Если получается $ \frac{0}{0} \text{ или } \frac{\infty}{\infty} $, тогда находим производную числителя и знаменателя
  3. Подставляем точку $ x $ в получившийся предел и вычисляем его. Если получается неопределенность, то повторяем пункты 2 и 3

Примеры решения

Пример 1
Решить предел по правилу Лопиталя: $ \lim\limits_{x \to -1} \frac{x^2-1}{x^3+x+2} $
Решение

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x^3+x+2} = \frac{0}{0} = $$

Видим, что получилась неопределенность $ \frac{0}{0} $, если подставить вместо иксов точку $ x = -1 $, а это первый сигнал о том, что необходимо применить формулу для вычисления предела. Используем её:

$$ = \lim \limits_{x \to -1} \frac{(x^2-1)"}{(x^3+x+2)"} = $$ $$ =\lim \limits_{x \to -1} \frac{2x}{3x^2+1} = $$

Снова попробуем вычислить предел подставив $ x=-1 $ в последний предел, получаем:

$$ =\frac{2 \cdot (-1)}{3 \cdot (-1)^2+1} = \frac{-2}{4} = -\frac{1}{2} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim\limits_{x \to -1} \frac{x^2-1}{x^3+x+2} = -\frac{1}{2} $$
Пример 4
Вычислить предел используя правило Лопиталя: $ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} $
Решение

$$ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} = \frac{0}{0}= $$

$$ =\lim \limits_{x\to 0} \frac{(\sin 2x-e^{5x}+1)"}{(x-\cos x+1)"} = $$

$$ =\lim \limits_{x\to 0} \frac{(\sin 2x)"-(e^{5x})"+(1)"}{(x)"-(\cos x)"+(1)"}= $$

$$ =\lim \limits_{x\to 0} \frac{2\cos 2x-5e^{5x}}{1+\sin x} =\frac{2\cos0-5e^0}{1+\sin 0}= $$

$$ =\frac{2\cdot 1-5\cdot 1}{1+0} = \frac{-3}{1} = -3 $$

Ответ
$$ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} = -3 $$

Подведем итог: Правило Лопиталя - это способ и метод благодаря которому можно раскрывать неопределенности вида $ \frac{0}{0} $ и $ \frac{\infty}{\infty} $ при вычислении пределов. Суть его состоит в том, что предел отношения функций равен пределу отношений производных от этих функций.

Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.

Теорема (правило Лопиталя ). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a , за исключением, быть может, самой точки a , и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x а, причем

(1)

Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание . Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.

Например, найти . Этот предел существует . Но отношение производных (1+ cosx)/ 1= 1+ cos x при x →∞ не стремится ни к какому пределу.

Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.

Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.

Для раскрытия неопределенностей 1 ∞ , 1 0 , ∞ 0 нужно прологарифмировать данную функцию и найти предел ее логарифма.

Примеры.

ФОРМУЛА ТЕЙЛОРА

Пусть функция y= f(x) задана на (a, b) и x 0 Î (a, b). Поставим следующую задачу: найти многочлен P(x) , значения которого в окрестности точки x 0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x 0 можно заменить более легкой задачей вычисления значений P(x) .

Пусть искомый многочлен имеет степень n P(x) = P n (x) . Будем искать его в виде

(1)

В этом равенстве нам нужно найти коэффициенты .

Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств:

Пусть функция y= f(x) имеет производные до n-ого порядка. Найдем коэффициенты многочлена P n (x ) исходя из условия равенства производных.

Введем обозначение n ! = 1·2·3…n , 0! = 1, 1! = 1.

Подставим в (1) x = x 0 и найдем , но с другой стороны . Поэтому

Учитывая третье условие и то, что

Очевидно, что и для всех последующих коэффициентов будет верна формула

Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен:

Обозначим и назовем эту разность n -ым остаточным членом функции f(x) в точке x 0 . Отсюда и, следовательно, если остаточный член будет мал.

Оказывается, что если x 0 Î (a , b ) при всех x Î (a , b ) существует производная f (n+1) (x ), то для произвольной точки x Î (a, b) существует точка, лежащая между x 0 и x такая, что остаток можно представить в виде:

Это так называемая формула Лагранжа для остаточного члена.

Где x Î (x 0 , x ) называется формулой Тейлора .

Если в этой формуле положить x 0 = 0, то она запишется в виде

где x Î ( x 0 , x ). Этот частный случай формулы Тейлора называют формулой МакЛорена .

РАЗЛОЖЕНИЕ ПО ФОРМУЛЕ МАКЛОРЕНА НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

  1. Рассмотрим функцию f(x)=e x . Представим ее по формуле МакЛорена в виде суммы многочлена и некоторого остатка. Для этого найдем производные до (n +1) порядка:

    Таким образом, получаем

    Используя эту формулу и придавая x различные значения, мы сможем вычислить значение e x .

    Например, при x =1, ограничиваясь n =8, получим формулу, позволяющую найти приближенное значение числа e :

    причем остаток

    Отметим, что для любого x Î R остаточный член

    Действительно, так как ξ Î (0; x ), то величина e ξ ограничена при фиксированном x . При x > 0 e ξ < e x . Докажем, что при фиксированном x

    Имеем

    Если x зафиксировано, то существует натуральное число N такое, что |x |<N .

    Обозначим Заметив, что 0n>N можем написать

    Но , не зависящая от n , а так как q<1. Поэтому Следовательно,

    Таким образом, при любом x , взяв достаточное число слагаемых, мы можем вычислить e x с любой степенью точности.

  2. Выпишем разложение по формуле МакЛорена для функции f(x) =sin x .

    Найдем последовательные производные от функции f(x) =sin x .

    Подставляя полученные значения в формулу МакЛорена, получим разложение:

    Несложно заметить, что преобразовав n -й член ряда, получим

    Так как , то аналогично разложению e x можно показать, что для всех x .

    Пример . Применим полученную формулу для приближенного вычисления sin 20°. При n =3 будем иметь:

    Оценим сделанную погрешность, которая равна остаточному члену:

    Таким образом, sin 20°= 0,342 с точностью до 0,001.

  3. f(x) = cos x . Аналогично предыдущему разложению можно вывести следующую формулу:

ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИИ

Вспомним сначала определения возрастающей и убывающей функций.

Функция y=f(x) , определенная на некотором отрезке [a, b ] (интервале (a, b )), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b ] соответствует большее значение функции, то есть если x 1 < x 2 , то f(x 1 ) < f(x 2 ) .

Функцияy=f(x) называется убывающей на некотором отрезке [a, b ], если меньшему значению аргумента x из [a, b ]соответствует большее значение функции, то есть если x 1 < x 2 , то f(x 1 ) > f(x 2 ) .

Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.

Функция y=f(x) называется постоянной на некотором отрезке [a, b ], если при изменении аргумента x она принимает одни и те же значения.

Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции.

(-∞, a ), (c , +∞) – убывает;

(a, b ) – постоянная;

(b, c ) – возрастает.

Применим понятие производной для исследования возрастания и убывания функции.

Теорема 1. (Необходимое и достаточное условия возрастания функции)

Правило говорит, что если функции f (x ) и g (x ) обладают следующим набором условий:

тогда существует . При этом теорема верна и для других баз (для указанной будет приведено доказательство).

История

Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализ бесконечно малых», изданном в году. В предисловии к этому сочинению Лопиталь указывает, что без всякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того, чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензии на все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу под примечательным названием «Усовершенствование моего опубликованного в „Анализе бесконечно малых“ метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», .

Доказательство

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида ).

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a , мы можем непрерывным образом их доопределить в этой точке: пусть f (a ) = g (a ) = 0 . Возьмём некоторый x из рассматриваемой полуокрестности и применим к отрезку теорему Коши . По этой теореме получим:

,

но f (a ) = g (a ) = 0 , поэтому .

Style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/56/85e2b8bb13d6fb1ddcf88e22a4bb6ef2.png" border="0"> для конечного предела и style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/101/e8b2f2b8861947c8728d4d1be40366d4.png" border="0"> для бесконечного,

что является определением предела отношения функций.

Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен A . Тогда, при стремлении x к a справа, это отношение можно записать как A + α , где α - (1). Запишем это условие:

.

Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :

, что можно привести к следующему виду: .

Для x , достаточно близких к a , выражение имеет смысл; предел первого множителя правой части равен единице (так как f (t ) и g (t ) - константы , а f (x ) и g (x ) стремятся к бесконечности). Значит, этот множитель равен 1 + β , где β - бесконечно малая функция при стремлении x к a справа. Выпишем определение этого факта, используя то же значение , что и в определении для α :

.

Получили, что отношение функций представимо в виде (1 + β)(A + α) , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и A был меньше , значит, предел отношения функций действительно равен A .

Если же предел A бесконечен (допустим, он равен плюс бесконечности), то

(x)}{g"(x)}>2M)" style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/101/e46c5113c49712376d1c357b5b202a65.png" border="0">.

В определении β будем брать ; первый множитель правой части будет больше 1/2 при x , достаточно близких к a , а тогда style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/50/2f7ced4a9b4b06f7b9085e982250dbcf.png" border="0">.

Для других баз доказательства аналогичны приведённым.

Примеры

(Только если числитель и знаменатель ОБА стремятся или к 0 ; или к ; или к .)


Wikimedia Foundation . 2010 .

Смотреть что такое "Лопиталя правило" в других словарях:

    Исторически неправильное наименование одного из основных правил раскрытия неопределённостей. Л. п. было найдено И. Бернулли и сообщено им Г. Лопиталю (См. Лопиталь), опубликовавшему это правило в 1696. См. Неопределённые выражения … Большая советская энциклопедия

    Раскрытие неопределенностей вида сведением предела отношения функций к пределу отношения производных рассматриваемых функций. Так, для случая, когда действительные функции f и gопределены в проколотой правосторонней окрестности точки ачисловой… … Математическая энциклопедия

    Правило Бернулли Лопиталя метод нахождения пределов функций, раскрывающий неопределённости вида и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия, В. В. Ивлев. В пособии излагается теория дифференциального и интегрального исчис­ления функций многих переменных с примерами, задачами и упражнениями с ответами. Помимо традиционных вопросов анализа…


Правило Лопиталя

Определение 1

Правило Лопиталя: при некоторых условиях предел отношения функций, переменная которых стремится к $a$, равен пределу отношения их производных, при $x$, также стремящемся к $a$ :

$\mathop{\lim }\limits_{x\to a} \frac{f(x)}{g(x)} =\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} $

Правило Лопиталя было открыто шведским математиком Иоганном Бернулли, который затем рассказал в письме о нём Лопиталю. Лопиталь же опубликовал это правило в первом учебнике по дифференциальному исчислению в 1696 году со своим авторством.

Правило Лопиталя применяется для выражений, сводимых к неопределенностям следующего вида:

$\frac{0}{0} \begin{array}{ccc} {} & {} & {\frac{\infty }{\infty } } \end{array}$

Вместо нуля в первом выражении может быть какая-либо бесконечно малая величина.

В общем случае правилом Лопиталя можно воспользоваться, если и в числителе, и в знаменателе одновременно нуль или бесконечность.

Условия, при которых можно применять правило Лопиталя:

  • Соблюдается условие, при котором пределы функций $f(x)$ и $g(x)$ при $x$ стремящемся к $a$ равны между собой и стремятся к нулю или бесконечности: $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to a} g(x)=0$ или $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to a} g(x)=\infty $;
  • Возможно получить производные $f(x)$ и $g(x)$ в окрестности $a$;
  • Производная функции $g(x)$ не нулевая $g"(x)\ne 0$ в окрестности $a$;
  • Предел отношения производных функций $f(x)$ и $g(x)$, в записи выглядящий как $\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} $ существует.

Доказательство правила Лопиталя:

  1. Пусть даны функции $f(x)$ и $g(x)$, причём наблюдается равенство пределов:
  2. $\mathop{\lim }\limits_{x\to a+0} f(x)=\mathop{\lim }\limits_{x\to a+0} g(x)=0 $.
  3. Доопределим функции в точке $a$. Для этой точки будет справедливым условие:
  4. $\frac{f(x)}{g(x)} =\frac{f(x)-f(a)}{g(x)-g(a)} =\frac{f"(c)}{g"(c)}$.
  5. Величина $c$ зависит от $x$, но если $x\to a+0$, то $c\to a$.
  6. $\mathop{\lim }\limits_{x\to a+0} \frac{f(x)}{g(x)} =\mathop{\lim }\limits_{c\to a+0} \frac{f"(c)}{g"(c)} =\mathop{\lim }\limits_{x\to a+0} \frac{f"(c)}{g"(c)} $.

Алгоритм вычисления решения с использованием правила Лопиталя

  1. Проверка всего выражения на неопределенность.
  2. Проверка всех условий, изложенных выше перед дальнейшим использованием правила Лопиталя.
  3. Проверка стремления производной функции к $0$.
  4. Повторная проверка на неопределенность.

Пример № 1:

Найти предел:

$\mathop{\lim }\limits_{x\to 0} \frac{x^{2} +5x}{3x} $

Решение:

  • Предел функции $f(x)$ равен пределу $g(x)$ и оба они равны нулю: $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to 0} (x^{2} +5x)=0$; $\mathop{\lim }\limits_{x\to a} g(x)=\mathop{\lim }\limits_{x\to 0} (3x)=0$
  • $g"(x)=3\ne 0$ в окрестности $a$
  • $\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} =\mathop{\lim }\limits_{x\to 0} \frac{2x+5}{3} $

$\mathop{\lim }\limits_{x\to 0} \frac{x^{2} +5x}{3x} =\left\langle \frac{0}{0} \right\rangle =\mathop{\lim }\limits_{x\to 0} \frac{\left(x^{2} +5x\right)"}{\left(3x\right)"} =\mathop{\lim }\limits_{x\to 0} \frac{2x+5}{3} =\frac{0+5}{3} =\frac{5}{3} $

Пример № 2:

Найти предел:

$\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -3x^{2} +2x}{x^{3} -x} $

Решение:

Проверим условия применимости правила Лопиталя:

  • $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to \infty } (x^{3} -3x^{2} +2x)=\infty $; $\mathop{\lim }\limits_{x\to a} g(x)=\mathop{\lim }\limits_{x\to \infty } (x^{3} -x)=\infty $
  • $f(x)$ и $g(x)$ дифференцируемы в окрестности $a$
  • $g"(x)=6\ne 0$ в окрестности $a$
  • $\mathop{\lim }\limits_{x\to a} \frac{f"(x)}{g"(x)} =\mathop{\lim }\limits_{x\to \infty } \frac{3x^{2} -6x+2}{3x^{2} -1} $

Запишем производную и найдем предел функции:

$\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -3x^{2} +2x}{x^{3} -x} =\left\langle \frac{\infty }{\infty } \right\rangle =\mathop{\lim }\limits_{x\to \infty } \frac{\left(x^{3} -3x^{2} +2x\right)"}{\left(x^{3} -x\right)"} =\mathop{\lim }\limits_{x\to \infty } \frac{3x^{2} -6x+2}{3x^{2} -1} =\left\langle \frac{\infty }{\infty } \right\rangle $

Повторяем вычисление производной пока не избавимся от неопределенности:

$\mathop{\lim }\limits_{x\to \infty } \frac{\left(3x^{2} -6x+2\right)"}{\left(3x^{2} -1\right)"} =\mathop{\lim }\limits_{x\to \infty } \frac{6x-6}{6x} =\left\langle \frac{\infty }{\infty } \right\rangle =\mathop{\lim }\limits_{x\to \infty } \frac{\left(6x-6\right)"}{\left(6x\right)"} =\frac{6}{6} =1$

Пример № 3:

Найти предел:

$\mathop{\lim }\limits_{x\to 0} \frac{\sin 5x}{x} $

Решение:

$\mathop{\lim }\limits_{x\to 0} \frac{\sin 5x}{x} =\left\langle \frac{0}{0} \right\rangle =\mathop{\lim }\limits_{x\to 0} \frac{\left(\sin 5x\right)"}{\left(x\right)"} =\mathop{\lim }\limits_{x\to 0} \frac{5\cos 5x}{1} =5\mathop{\lim }\limits_{x\to 0} \cos 5x=5$

Пример № 4:

Найти предел:

$\mathop{\lim }\limits_{x\to \infty } (1+x^{2})^{1/x} $

Решение:

Прологарифмируем функцию:

$\ln y=\frac{1}{x} \ln (1+x^{2})=\frac{\ln (1+x^{2})}{x} $

$\mathop{\lim }\limits_{x\to \infty } \frac{\ln (1+x^{2})}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{\left[\ln (1+x^{2})\right]"}{x"} =\mathop{\lim }\limits_{x\to \infty } \frac{\frac{2x}{1+x^{2} } }{1} =0$

Поскольку функция $ln(y)$ - непрерывная, получим:

$\mathop{\lim }\limits_{x\to \infty } (\ln y)=\ln (\mathop{\lim }\limits_{x\to \infty } y)$

Следовательно,

$\ln (\mathop{\lim }\limits_{x\to \infty } y)=0$

$\mathop{\lim }\limits_{x\to \infty } y=1$

$\mathop{\lim }\limits_{x\to \infty } (1+x^{2})^{1/x} =1$

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является matematikam.ru.


Самое обсуждаемое
Ethereum. Курс Эфира. Что происходит!? Будущее за эфиром: что надо знать о криптовалюте российского разработчика Что будет с эфиром Ethereum. Курс Эфира. Что происходит!? Будущее за эфиром: что надо знать о криптовалюте российского разработчика Что будет с эфиром
Курс евро на лето: эксперты дали свой прогноз Курс евро на лето: эксперты дали свой прогноз
Как через Сбербанк Онлайн заплатить кредит Русфинанс Банк – пошаговая инструкция оплаты без комиссии Как через Сбербанк Онлайн заплатить кредит Русфинанс Банк – пошаговая инструкция оплаты без комиссии


top